Diagonalization

Theorem 8

Let A be an nxn matrix with eigenvalues 4,, 4,, 4,,... 4,. If A has n independent

eigenvectors v, v® v® V™ then there exists a matrix P such that
P*AP =D (8)
where
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and therefore, D = P*AP .



Example
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From an earlier problem we know that 4,=10, 4,=4, =1 and
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We have previously shown that if a matrix A has a full set of eigenvectors, it can be
diagonalized by the similarity transformation P*AP = D (which can also be written
inthe form A =PD P‘l). Many problems in mathematics, physics and engineering

can be solved by knowing a formula for the n" power of a matrix. One way to

establish such a formula is as follows:

A=PDP™*
A’ =PDP'PDP*=PD?*P™
A*=PD?’P'PDP*=PD°P™
A"=PD"P 9)

If we go back to the previous example,
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Homework

n

1 0 O 1 0 0
1. Showthat |-1 1 1| =|1-2" 2" -3" 3r-2"
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2. Find a formula for the n™ power of the matrix T = L 0 }

1 -1 1
3. Find a formula for the n™ power of the matrix A={0 1 -1|.
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