
Diagonalization 

 
 Theorem 8 

 

  Let A be an n n  matrix with eigenvalues 
1 2 3, , , n    .  If A  has n  independent  

  eigenvectors (1) (2) (3) ( ), , , , nv v v v , then there exists a matrix P  such that  

                                                            
1P AP D                                                                (8) 

   where  

           (1) (2) (3) ( )n

n n
P v v v v


 
           

1

2

0 0

0

0

0 0 n

D







 
 
 
 
 
  

 . 

 

   Proof 

 

                      

1

2(1) (2) ( )

0 0

0

0

0 0

n

n

P D v v v







 
 
  
  
 
  

   

 

                               
2

(1) (2) ( )
1 n

nv v v     
 

  

                               (1) (2) ( )n APAv Av Av   
 

 

     and therefore,  1D P AP . 

 

 

    

 

 

 

  

 



Example 
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     From equation (8) we have 
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     We have previously shown that if a matrix A has a full set of eigenvectors, it can be  

   diagonalized by the similarity transformation 1P AP D   (which can also be written  

   in the form 1A P D P  . Many problems in mathematics, physics and engineering  

   can be solved by knowing a formula for the thn  power of a matrix. One way to  

   establish such a formula is as follows: 
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      If we go back to the previous example,  
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Homework 
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