Diagonalization

Theorem 8

Let *A* be an $n \times n$ matrix with eigenvalues λ_1 , λ_2 , λ_3 ,..., λ_n . If *A* has *n* independent eigenvectors $\vec{v}^{(1)}$, $\vec{v}^{(2)}$, $\vec{v}^{(3)}$,..., $\vec{v}^{(n)}$, then there exists a matrix *P* such that

$$P^{-1}AP = D \tag{8}$$

where

$$P = \begin{bmatrix} \vec{v}^{(1)} & \vec{v}^{(2)} & \vec{v}^{(3)} & \dots & \vec{v}^{(n)} \end{bmatrix}_{n \times n} \qquad D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}.$$

Proof

$$PD = \begin{bmatrix} \vec{v}^{(1)} & \vec{v}^{(2)} & \cdots & \vec{v}^{(n)} \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda_1 \vec{v}^{(1)} & \lambda_2 \vec{v}^{(2)} & \cdots & \lambda_n \vec{v}^{(n)} \end{bmatrix}$$
$$= \begin{bmatrix} A \vec{v}^{(1)} & A \vec{v}^{(2)} & \cdots & A \vec{v}^{(n)} \end{bmatrix} = AP$$

and therefore, $D = P^{-1}AP$.

Example

Recall the matrix

$$A = \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix}.$$

From an earlier problem we know that $\lambda_1 = 10$, $\lambda_2 = \lambda_3 = 1$ and

$$\vec{v}^{(1)} = v_3 \begin{bmatrix} 2\\2\\1 \end{bmatrix}, \quad \vec{v}^{(2)} = v_2 \begin{bmatrix} -1\\1\\0 \end{bmatrix} \text{ and } \vec{v}^{(3)} = v_3 \begin{bmatrix} -\frac{1}{2}\\0\\1 \end{bmatrix}.$$

From equation (8) we have

$$P^{-1}AP = \begin{bmatrix} 2 & -1 & -\frac{1}{2} \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & -\frac{1}{2} \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$= \frac{1}{9} \begin{bmatrix} 2 & 2 & 1 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix} \begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix} \begin{bmatrix} 2 & -1 & -\frac{1}{2} \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$= \frac{1}{9} \begin{bmatrix} 20 & 20 & 10 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix} \begin{bmatrix} 2 & -1 & -\frac{1}{2} \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$
$$= \frac{1}{9} \begin{bmatrix} 90 & 0 & 0 \\ 0 & 9 & 0 \\ 0 & 0 & 9 \end{bmatrix} = \begin{bmatrix} 10 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 \end{bmatrix}$$

We have previously shown that if a matrix A has a full set of eigenvectors, it can be diagonalized by the similarity transformation $P^{-1}AP = D$ (which can also be written in the form $A = PDP^{-1}$). Many problems in mathematics, physics and engineering can be solved by knowing a formula for the n^{th} power of a matrix. One way to establish such a formula is as follows:

$$A = PDP^{-1}$$

$$A^{2} = PDP^{-1}PDP^{-1} = PD^{2}P^{-1}$$

$$A^{3} = PD^{2}P^{-1}PDP^{-1} = PD^{3}P^{-1}$$

$$\vdots$$

$$A^{n} = PD^{n}P^{-1}$$
(9)

If we go back to the previous example,

$$\begin{bmatrix} 5 & 4 & 2 \\ 4 & 5 & 2 \\ 2 & 2 & 2 \end{bmatrix}^{n} = \frac{1}{9} \begin{bmatrix} 2 & -1 & -\frac{1}{2} \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 10^{n} & 0 & 0 \\ 0 & 1^{n} & 0 \\ 0 & 0 & 1^{n} \end{bmatrix} \begin{bmatrix} 2 & 2 & 1 \\ -4 & 5 & -2 \\ -2 & -2 & 8 \end{bmatrix}$$

$$=\frac{1}{9}\begin{bmatrix}2\cdot10^{n} & -1 & -\frac{1}{2}\\2\cdot10^{n} & 1 & 0\\10^{n} & 0 & 1\end{bmatrix}\begin{bmatrix}2 & 2 & 1\\-4 & 5 & -2\\-2 & -2 & 8\end{bmatrix}$$

	$4(10^n)+5$	$4(10^{n})-4$	$2(10^n)-2$
$=\frac{1}{9}$	$4(10^{n})-4$	$4(10^{n})+5$	$2(10^n)-2$
	$2(10^n)-2$	$2(10^n)-2$	$10^{n} + 8$

Homework

1. Show that
$$\begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 1 \\ -1 & -2 & 4 \end{bmatrix}^{n} = \begin{bmatrix} 1 & 0 & 0 \\ 1-2^{n} & 2^{n+1}-3^{n} & 3^{n}-2^{n} \\ 1-2^{n} & 2^{n+1}-2\cdot3^{n} & 2\cdot3^{n}-2^{n} \end{bmatrix}.$$

2. Find a formula for the
$$n^{th}$$
 power of the matrix $T = \begin{bmatrix} 3 & -2 \\ 1 & 0 \end{bmatrix}$.

3. Find a formula for the
$$n^{th}$$
 power of the matrix $A = \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix}$.